Properties of phylogenetic trees generated by Yule-type speciation models.
نویسندگان
چکیده
We investigate some discrete structural properties of evolutionary trees generated under simple null models of speciation, such as the Yule model. These models have been used as priors in Bayesian approaches to phylogenetic analysis, and also to test hypotheses concerning the speciation process. In this paper we describe new results for three properties of trees generated under such models. Firstly, for a rooted tree generated by the Yule model we describe the probability distribution on the depth (number of edges from the root) of the most recent common ancestor of a random subset of k species. Next we show that, for trees generated under the Yule model, the approximate position of the root can be estimated from the associated unrooted tree, even for trees with a large number of leaves. Finally, we analyse a biologically motivated extension of the Yule model and describe its distribution on tree shapes when speciation occurs in rapid bursts.
منابع مشابه
On the distribution of interspecies correlation for Markov models of character evolution on Yule trees.
Efforts to reconstruct phylogenetic trees and understand evolutionary processes depend fundamentally on stochastic models of speciation and mutation. The simplest continuous-time model for speciation in phylogenetic trees is the Yule process, in which new species are "born" from existing lineages at a constant rate. Recent work has illuminated some of the structural properties of Yule trees, bu...
متن کاملStochastic properties of generalised Yule models, with biodiversity applications.
The Yule model is a widely used speciation model in evolutionary biology. Despite its simplicity many aspects of the Yule model have not been explored mathematically. In this paper, we formalise two analytic approaches for obtaining probability densities of individual branch lengths of phylogenetic trees generated by the Yule model. These methods are flexible and permit various aspects of the t...
متن کاملMajority rule has transition ratio 4 on Yule trees under a 2-state symmetric model
Inferring the ancestral state at the root of a phylogenetic tree from states observed at the leaves is a problem arising in evolutionary biology. The simplest technique – majority rule – estimates the root state by the most frequently occurring state at the leaves. Alternative methods – such as maximum parsimony explicitly take the tree structure into account. Since either method can outperform...
متن کاملTopology and inference for multi-type Yule trees
We introduce two models for multi-type random trees motivated by studies of trait dependence in the evolution of species. Our discrete time model, the multi-type ERM tree, is a generalization of Markov propagation models on a random tree generated by a binary search or ‘equal rates Markov’ mechanism. Our continuous time model, the multi-type Yule tree with mutations, is a multi-type generalizat...
متن کاملTopology and inference for Yule trees with multiple states.
We introduce two models for random trees with multiple states motivated by studies of trait dependence in the evolution of species. Our discrete time model, the multiple state ERM tree, is a generalization of Markov propagation models on a random tree generated by a binary search or 'equal rates Markov' mechanism. Our continuous time model, the multiple state Yule tree, is a generalization of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical biosciences
دوره 170 1 شماره
صفحات -
تاریخ انتشار 2001